Abstract

A first-principles calculations, based on the norm-conserving pseudopotentials and the density functional theory (DFT) and the density functional perturbation theory (DFPT) as implemented in the ABINIT code, have been performed to investigate the structural stability, elastic, lattice dynamic and thermodynamic properties of the ordered SiGe, SiSn and GeSn cubic alloy in zinc-blende (B3) structure. The calculated lattice parameters and bulk modulus agree with the previous results. The second-order elastic constants have been calculated and other related quantities such as the Young’s modulus, shear modulus, anisotropy factor are also estimated. We also obtain the data of lattice dynamics and the temperature dependent properties currently lacking for SiGe, SiSn and GeSn. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as the internal energy, Helmholtz free energy, entropy and heat capacity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.