Abstract

A combination of density functional theory and non-equilibrium Green’s function methods are used to simulate spin-dependent electronic transport in monatomic Au-nanowires sandwiched between ferromagnetic electrodes. Electrodes of the junction are in turn composed of tetragonal FeCo, FePd and FePt alloys. Magnetic anisotropy energies of the electrodes are calculated for different values of the c/a ratios of the electrode lattice constants and it is shown that at c/a = 1.05, the FePt electrodes gain a relatively large amount of magnetic anisotropy energy (MAE). Hence, it is concluded that the ferromagnetic FePt alloy can be used as a suitable type of electrode for applications in perpendicular magnetic tunnel junctions (MTJs). We observe that increasing the c/a ratio leads to notable improvements in the spin filtering of the FeCo and FePd MTJs while it only has a slight effect on the filtering of the FePt MTJ. Later, we show that by removing the interfacial Pt atoms of the FePt MTJ, we are able to enhance its filtering property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.