Abstract
It has been empirically known that the coercivity of rare-earth permanent magnets depend on the size and shape of fine particles of the main phase in the system. Also, recent experimental observations have suggested that the atomic scale structures around the grain-boundaries of the fine particles play a crucial role to determine their switching fields. In this article, we review a theoretical attempt to describe the finite temperature magnetic properties and to evaluate the reduction of the switching fields of fine particles of several rare-earth permanent magnet materials based on an atomistic spin model that is constructed using first-principles calculations. It is shown that, over a wide temperature range, the spin model gives a good description of the magnetization curves of rare-earth intermetallic compounds such as R2Fe14B (R = Dy, Ho, Pr, Nd, Sm) and SmFe12. The atomistic spin model approach is also used to describe the local magnetic anisotropy around the surfaces of the fine particles, and predicts that the rare-earth ions may exhibit planar magnetic anisotropy when they are on the crystalline-structure surfaces of the particles. The dynamical simulation of the atomistic spin model and the corresponding micromagnetic simulation show that the planar surface magnetic anisotropy causes a reduction in the switching field of fine particles by approximately 20-30%, which may be relevant to the atomic scale surface effects found in the experimental studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Japan Society of Powder and Powder Metallurgy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.