Abstract
The plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to anaylse the bulk modulus, thermal expansion coefficient and heat capacity of LaB6. The quasi-harmonic Debye model, using a set of total energy versus volume obtained with the plane-wave pseudopotential method, is applied to the study of the thermal properties and vibrational effects. We analyse the bulk modulus of LaB6 up to 1500 K. The elastic properties calculations show that our system is mechanically stable. For the heat capacity and the thermal expansion, significant differences in properties are observed above 300K. The calculated zero pressure bulk modulus is in good agreement with the experimental data. Moreover, the Debye temperatures are determined from the non-equilibrium Gibbs functions and compared to available data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.