Abstract

High dielectric permittivity (ε′ ≈ 2000―6900) was accomplished in Sn4+-doped CaCu2.95Mg0.05Ti4O12 ceramics while retaining a low loss tangent (tanδ ≈ 0.027―0.075). Further, significant improvements in the nonlinear electrical properties, such as high values of the breakdown electric field (Eb ≈ 1.2―1.3 × 104 V cm−1) and nonlinear coefficient (α ≈ 31), were achieved. In addition, the nonlinear electrical parameters significantly improved, which is consistent with the increase in the electrical resistivities of the grains and grain boundaries due to the decrease in the Cu+/Cu2+ ratio. According to our first-principles calculations, the Sn atom at the Ti site prefers to be close to the Mg atom at the Cu site, while the oxygen vacancy prefers to be located at large distances from the Sn and Mg co-dopants. This confirms that the dielectric behavior and the nonlinear electrical properties originate from the interface between the grain and grain boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call