Abstract

AbstractThe electronic and magnetic properties of half-metallic CrO2 have been studied by using the full-potential linearized muffin-tin orbital method within the local spin-density approximation (LSDA)+U approach. It is found that the orbital magnetic moment of Cr atom is quenched while O atom exhibit relatively significant orbital moment in CrO2. For the Hubbard U of 3 eV, LSDA+U gives the orbital moment of -0.051μB/atom for Cr and -0.0025μB/atom for O, being in good agreement with the experimental orbital moments of -0.05 for Cr and -0.003μB/atom for O, respectively. In contrast, LSDA gives the orbital moment of -0.037 for Cr and -0.0011 μB/atom for O, being too small as compared with the magnetic circular dichroism measurements. For the larger U considered in this work, both spin and orbital moments almost increase linearly with respect to U.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call