Abstract

First-principles calculations are used to calculate the strain dependencies of the binding and diffusion-activation energies for Ge adatoms on both Si(001) and Ge(001) surfaces. Our calculations reveal that the binding and activation energies on a strained Ge(001) surface increase and decrease, respectively, by 0.21 and 0.12 eV per percent compressive strain. For a growth temperature of $600\ifmmode^\circ\else\textdegree\fi{}\mathrm{C},$ these strain-dependencies give rise to a 16-fold increase in adatom density and a fivefold decrease in adatom diffusivity in the region of compressive strain surrounding a Ge island with a characteristic size of 10 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.