Abstract

The cohesive properties of Ni-Sn intermetallics (stable, metastable, and virtual), hitherto unexplored by density-functional theory (DFT) methods, are reported. Specifically, the total energies and cohesive properties of Ni, Sn, and 27 Ni-Sn intermetallics are calculated from first-principles, using ultrasoft pseudopotentials (USPP) and both local-density approximation (LDA) and generalized-gradient approximation (GGA) for the exchange-correlation functional. Among the intermetallics considered, the ground-state structures are consistent with experimental observations; however, not all of them are registered in the equilibrium-phase diagram. An important result of this systematic study, using both USPP-LDA and USPP-GGA, is that oC20-NiSn4 is predicted to be the ground-state structure. Only recently, this phase has been observed as a product of the interfacial reaction in Ni/Sn diffusion couples. In addition, we find that the thermodynamic stability of a tetragonal phase, tP10-NiSn4, is very similar to that of oC20-NiSn4. The elastic stability of both tP10-NiSn4 and oC20-NiSn4 is confirmed by calculating their single-crystal elastic constants. The calorimetric data for the enthalpy of formation of stable intermetallics show an agreement that is better for those calculated with USPP-LDA than those calculated with USPP-GGA. In general, the experimental lattice parameters of stable and metastable phases are found to lie between those calculated using USPP-LDA and those calculated using USPP-GGA; however, in several cases, the values calculated using USPP-GGA agree to within 1 pct of the experimental data. The Ni3Sn2(ht) ⇌ Ni3Sn2(lt) transformation is discussed in terms of supergroup-subgroup relations. The bonding between the Ni and the Sn is discussed based on the analyses of the density of states (DOS) and the charge densities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.