Abstract

A first-principles full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory is applied to the study of the static equilibrium lattice structure as well as the elastic constants of the cubic anti-ReO3 structural copper nitride(Cu3N). The quasi-harmonic Debye model, in which the phononic effects are considered, is used to investigate the thermodynamic properties of Cu3N. The pressure and temperature dependences of lattice constant, heat capacity and thermal expansion coefficient are successfully obtained . The bulk modulus and Debye temperature are also calculated at different pressures and temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.