Abstract

The relations between electronic structure and thermoelectric property of misfit layered cobaltite of Ca3Co4O9 and La-doped series are studied from the calculation by density function and discrete variation method (DFT-DVM). The highest valence band (HVB) and the lowest conduction band (LCB) near Fermi level are only mainly from O 2p and Co 3d in Ca2CoO3 layer. Therefore, the semiconductor, or thermoelectric property of Ca3Co4O9 should be mainly from Ca2CoO3 layer, but have no direct relation to the CoO2 layer, which is consistent with that binary oxides hardly have thermoelectric property, but trinary oxide compounds have quite good thermoelectric property. With the amount of La-doped increase, the gap between HVB and LCB firstly decrease, then reaches the minimum, finally increase. The gap affects the thermoelectric property. Therefore, there is a best amount of Na-doped to improve thermoelectric property, which is consistent with the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.