Abstract

Forced-gradient groundwater tracer tests may be conducted using a variety of hydraulic schemes, so it is useful to have simple semi-analytic models available that can examine various injection/withdrawal scenarios. Models for radially convergent tracer tests are formulated here as transfer functions, which allow complex tracer test designs to be simulated by a series of simple mathematical expressions. These mathematical expressions are given in Laplace space, so that transfer functions may be placed in series by simple multiplication. Predicted breakthrough is found by numerically inverting the composite transfer function to the time-domain, using traditional computer programs or commercial mathematical software. Transport is assumed to be dictated by a radially convergent or uniform flow field, and is based upon an exact first-passage-time solution of the backward Fokker–Planck equation. These methods are demonstrated by simulating a weak-dipole tracer test conducted in a fractured granite formation, where mixing in the injection borehole is non-ideal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.