Abstract

The reliability analysis of high-dimensional stochastic dynamical systems subjected to random excitations has long been one of the major challenges in civil and various engineering fields. Despite great efforts, no satisfactory method with high efficiency and accuracy has been available as yet for high-dimensional systems even when they are linear systems, not to mention generic nonlinear systems. In the present paper, a novel method by imposing appropriate absorbing boundary condition on the newly developed ensemble-evolving-based generalized density evolution equation (EV-GDEE) combined with a feasible numerical method is proposed to capture the time-variant first-passage reliability of high-dimensional systems enforced by additive white noise excitation. In the proposed method, the equivalent drift coefficients in EV-GDEE can be estimated by analytical expression or captured by some representative deterministic dynamic analyses. Further, imposing the absorbing boundary condition and then solving the EV-GDEE, a one-or two-dimensional partial differential equation (PDE), yield the remaining probability density of the response of interest. Consequently, by integrating the remaining probability density, the numerical solution of time-variant first-passage reliability can be obtained. Several numerical examples are illustrated to verify the efficiency and accuracy of the proposed method. Compared to the Monte Carlo simulation, the proposed method is of much higher efficiency. Problems to be further studied are finally discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.