Abstract

In this work, we investigate the temporal evolution of the degree of a given vertex in a network by mapping the dynamics into a random walk problem in degree space. We analyze when the degree approximates a preestablished value through a parallel with the first-passage problem of random walks. The method is illustrated on the time-dependent versions of the Erdős-Rényi and Watts-Strogatz models, which were originally formulated as static networks. We have succeeded in obtaining an analytic form for the first and the second moments of the first-passage time and showing how they depend on the size of the network. The dominant contribution for large networks with N vertices indicates that these quantities scale on the ratio N/p, where p is the linking probability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call