Abstract

It is known that some fuzzy predicate logics, such as Łukasiewicz predicate logic, are not complete with respect to the standard real-valued semantics. In the present paper we focus upon a typed version of first-order MTL (Monoidal T-norm Logic), which gives a unified framework for different fuzzy logics including, inter alia, Hajek’s basic logic, Łukasiewicz logic, and Godel logic. And we show that any extension of first-order typed MTL, including Łukasiewicz predicate logic, is sound and complete with respect to the corresponding categorical semantics in the style of Lawvere’s hyperdoctrine, and that the so-called Baaz delta translation can be given in the first-order setting in terms of Lawvere’s hyperdoctrine. A hyperdoctrine may be seen as a fibred algebra, and the first-order completeness, then, is a fibred extension of the algebraic completeness of propositional logic. While the standard real-valued semantics for Łukasiewicz predicate logic is not complete, the hyperdoctrine, or fibred algebraic, semantics is complete because it encompasses a broader class of models that is sufficient to prove completeness; in this context, incompleteness may be understood as telling that completeness does not hold when the class of models is restricted to the standard class of real-valued hyperdoctrine models. We expect that this finally leads to a unified categorical understanding of Takeuti-Titani’s fuzzy models of set theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.