Abstract

We address the issue of how triplet superconductivity emerges in an electronic system near a ferromagnetic quantum critical point (FQCP). Previous studies found that the superconducting transition is of second order, and T(c) is strongly reduced near the FQCP due to pair-breaking effects from thermal spin fluctuations. In contrast, we demonstrate that near the FQCP, the system avoids pair-breaking effects by undergoing a first order transition at a much larger T(c). A second order superconducting transition emerges only at some distance from the FQCP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.