Abstract

Using a Monte Carlo method, we study the finite-temperature phase transition in the two-dimensional classical Heisenberg model on a triangular lattice with or without easy-plane anisotropy. The model takes account of competing interactions: a ferromagnetic nearest-neighbor interaction J 1 and an antiferromagnetic third nearest-neighbor interaction J 3 . As a result, the ground state is a spiral spin configuration for -4 < J 1 / J 3 < 0. In this structure, global spin rotation cannot compensate for the effect of 120° lattice rotation, in contrast to the conventional 120° structure of the nearest-neighbor interaction model. We find that this model exhibits a first-order phase transition with breaking of the lattice rotation symmetry at a finite temperature. The transition is characterized as a Z 2 vortex dissociation in the isotropic case, whereas it can be viewed as a Z vortex dissociation in the anisotropic case. Remarkably, the latter is continuously connected to the former as the magnitude of anisotropy decreases, in contrast to the recent work by Misawa and Motome [J. Phys. Soc. Jpn. 79 (2010) 073001] in which both the transitions were found to be continuous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.