Abstract

We introduce a simple continuous model for nonequilibrium surface growth. The dynamics of the system is defined by the Kardar-Parisi-Zhang equation with a Morse-like potential representing a short range interaction between the surface and the substrate. The mean field solution displays a nontrivial phase diagram with a first-order transition between a growing and a bound surface, associated with a region of coexisting phases, and a tricritical point where the transition becomes second order. Numerical simulations in three dimensions show quantitative agreement with mean field results, and the features of the phase space are preserved even in two dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.