Abstract

First-order compartment models are common tools for modelling many biological processes, including pharmacokinetics. Given the compartments and the transfer rates, solutions for the time-dependent quantity (or concentration) curves can normally be described by a sum of exponentials. This paper investigates cases that go beyond simple sums of exponentials. With specific relations between the transfer rate constants, two exponential rate constants can be equal, in which case the normal solution cannot be used. The conditions for this to occur are discussed, and advice is provided on how to circumvent these cases. An example of an analytic solution is given for the rare case where an exact equality is the expected result. Furthermore, for models with at least three compartments, cases exist where the solution to a real-valued model involves complex-valued exponential rate constants. This leads to solutions with an oscillatory element in the solution for the tracer concentration, i.e., there are cases where the solution is not a simple sum of (real-valued) exponentials but also includes sine and cosine functions. Detailed solutions for three-compartment cases are given. As a tentative conclusion of the analysis, oscillatory solutions appear to be tied to cases with a cyclic element in the model itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.