Abstract
An investigation into the smectic-A to chiral nematic (N'A) transition in liquid crystals is presented by using adiabatic scanning calorimetry (ASC). It is predicted theoretically that chirality drives this transition to first order. This transition is studied in mixtures of the nonchiral liquid crystal octyloxycyanobiphenyl (8OCB) and the chiral 4-(2-methylbutyl)-4(')-cyanobiphenyl (CB15), a system with a large (chiral) nematic region that widens upon increasing the chiral (CB15) fraction. An ASC measurement on pure 8OCB showed no evidence for a latent heat, in agreement with previous ac calorimetric studies, with an upper boundary for the latent heat (if any) of 1.8 J/kg. Since pure 8OCB has no measurable latent heat, and taking into account the widening of the chiral nematic region, the possibility of a continuous to first-order crossover due to the coupling of the nematic and the smectic order parameters, as occurring in several cases of smectic-A to nematic (NA) transitions, can be excluded. However, for all examined mixtures a latent heat could be determined at the smectic-A to chiral nematic transition. This confirms theoretical predictions of the first order character of this transition. Quantitatively, theoretical predictions of the evolution of the entropy discontinuities and latent heats of this transition were not consistent with the experimental results. It was further observed that the transition temperature decreases linearly in agreement with theoretical predictions and a previous ac calorimetric study. Finally, it was observed that the pretransitional specific heat capacity shows an interesting evolution upon increasing chiral fraction, and it may be concluded that any theoretical model based on Landau theory is not sufficient to describe this transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physical review. E, Statistical, nonlinear, and soft matter physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.