Abstract

Background C-Met, which is frequently activated in multiple cancers, has been implicated in tumor formation, progression, metastasis, angiogenesis, and resistance to multiple therapies. MK-8033 is a small-molecule inhibitor of c-Met that binds preferentially to the activated conformation, and has demonstrated anti-tumor activity in preclinical models. This first-in-human trial was performed to establish the safety and maximum tolerated dose (MTD), as well as preliminary pharmacokinetics (PK) and clinical activity. Methods Forty-seven patients were enrolled in three parts. The primary objective of Parts A and B was safety, whereas Part C evaluated the effect of proton-pump inhibitors on MK-8033 absorption. Dose escalation used an accelerated continual reassessment method, and dose-limiting toxicities (DLTs) were any treatment-related, first course non-hematologic grade ≥ 3 toxicity (except alopecia or inadequately treated nausea/vomiting/diarrhea), grade 4 hematologic toxicity (except grade 3 neutropenic fever and thrombocytopenia), or toxicity where treatment is held >3weeks. Results Forty-six patients were treated across nine dose levels, and the MTD was 750mg twice daily. DLTs were fatigue, nausea, vomiting, transaminitis, and hypokalemia. Most frequent toxicities were fatigue (28.3%), nausea (21.7%), and alopecia (19.6%), predominately grade ≤ 2. One patient with endometriod adenocarcinoma achieved a partial response and eight had stable disease. Median progression-free survival (PFS) was 57days. Strikingly, the PFS for the one responder was 846days. PK results showed that proton-pump inhibitors have no effect on MK-8033 absorption. Conclusion MK-8033 was well tolerated with no significant toxicity issues, albeit with limited clinical activity. Unfortunately, the company decided to discontinue further clinical development of MK-8033.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.