Abstract

Blockade of the cluster of differentiation 40 (CD40)-CD40L interaction has potential for treating autoimmune diseases and preventing graft rejection. This first-in-human, randomized, double-blind, placebo-controlled study (NCT04497662) evaluated safety, pharmacokinetics, receptor occupancy, and pharmacodynamics of the humanized anti-CD40 monoclonal antibody KPL-404. Healthy volunteers were randomized to one of two single-ascending-dose groups: single intravenous KPL-404 dose 0.03, 0.3, 1, 3, or 10 mg/kg or single subcutaneous KPL-404 dose 1 or 5 mg/kg. There were no dose-limiting or dose-related safety findings. Nonlinear dose-dependent changes in various pharmacokinetic parameters were identified following the range of intravenous doses. At the 10 mg/kg intravenous dose level, the t1/2 was approximately 7 days, and full receptor occupancy was observed through Day 71, with complete suppression of T-cell-dependent antibody response (TDAR) to keyhole limpet hemocyanin (KLH) challenge on Day 1 and rechallenge on Day 29 through Day 57. With KPL-404 5 mg/kg subcutaneously, full receptor occupancy was observed through Day 43, with complete suppression of TDAR through at least Day 29. Antidrug antibodies to KPL-404 were suppressed for 57 days with 10 mg/kg intravenously and for 50 days with 5 mg/kg subcutaneously, further confirming prolonged target engagement and pharmacodynamics. These findings support continued investigation of KPL-404 intravenous and subcutaneous administration in a broad range of indications. SIGNIFICANCE STATEMENT: This first-in-human clinical trial of KPL-404, a fully humanized IgG4 monoclonal antibody, was designed with two independent (by route of administration) placebo-controlled single-ascending-dose-level groups, one with four intravenous single-dose cohorts and another with two subcutaneous single-dose cohorts. The pharmacokinetic profile, duration of full CD40 receptor occupancy, and magnitude and duration of memory immune response suppression observed confirm pharmacodynamic activity regardless of administration route. These data provide evidence that chronic KPL-404 dosing regimens (intravenous or subcutaneous) could be practical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call