Abstract
XMM-Newton was used to observe two eclipsing, magnetic cataclysmic variables, DP Leo and WW Hor, continuously for three orbital cycles each. Both systems were in an intermediate state of accretion. For WW Hor we also obtained optical light curves with the XMM-Newton Optical Monitor and from ground-based observations. Our analysis of the X-ray and optical light curves allows us to constrain physical and geometrical parameters of the accretion regions and derive orbital parameters and eclipse ephemerides of the systems. For WW Hor we directly measure horizontal and vertical temperature variations in the accretion column. From comparisons with previous observations we find that changes in the accretion spot longitude are correlated with the accretion rate. For DP Leo the shape of the hard X-ray light curve is not as expected for optically thin emission, showing the importance of optical depth effects in the post-shock region. We find that the spin period of the white dwarf is slightly shorter than the orbital period and that the orbital period is decreasing faster than expected for energy loss by gravitational radiation alone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.