Abstract

We report the first UV satellite observations of mesospheric water vapor. The measurements are of nonthermal OH prompt emission between 300–330 nm produced directly from the photodissociation of water vapor by H Lyman‐α. This technique is most sensitive to water vapor concentrations between 70–90 km altitude. We present OH data from two limb scanning experiments: the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) and the Optical Spectrograph and Infra‐Red Imager System (OSIRIS). Interpretation of the lower resolution (∼1 nm) OSIRIS spectra requires the rotational emission rate factors for OH(1,1) solar fluorescence between 313–318 nm, which we present for the first time herein. Comparison of water vapor concentration profiles with the most coincident profiles from the Halogen Occultation Experiment on the Upper Atmosphere Research Satellite shows agreement to within 30% between 75–80 km for both MAHRSI and OSIRIS. We discuss the benefits of this promising new approach to measuring upper mesospheric water vapor and the need for new laboratory measurements to improve the analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call