Abstract
Anguillid eel populations have declined dramatically over the last 50 years in many regions of the world, and numerous species are now under threat. A critical life-history phase is migration from freshwater to distant oceans, culminating in a single life-time spawning event. For many anguillids, especially those in the southern hemisphere, mystery still shrouds their oceanic spawning migrations. We investigated the oceanic spawning migrations of the Australasian short-finned eel (Anguilla australis) using pop-up satellite archival tags. Eels were collected from river estuaries (38° S, 142° E) in south-eastern temperate Australia. In 2019, 16 eels were tracked for up to about 5 months, ~ 2620 km from release, and as far north as the tropical Coral Sea (22° S, 155° E) off the north-east coast of Australia. Eels from southern Australia appeared to access deep water off the Australian coast via two main routes: (i) directly east via Bass Strait, or (ii) south-east around Tasmania, which is the shortest route to deep water. Tagged eels exhibited strong diel vertical migrations, alternating between the warm euphotic zone (~ 100–300 m, 15–20 °C) at night and the mesopelagic zone (~ 700–900 m, 6–8 °C) during the day. Marine predators, probably lamnid sharks, tuna, or marine mammals, ended many eel migrations (at least ~ 30%), largely before the eels had left the Australian continental shelf. The long and risky marine migrations of Australasian eels highlight the need for better information on the processes contributing to eel mortality throughout the life cycle, including the impacts of future changes to oceanic currents, predator abundance and direct anthropogenic disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Scientific Reports
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.