Abstract

The search of extragalactic regions with conspicuous presence of Wolf-Rayet (WR) stars outside the Local Group is challenging task due to the difficulties in detecting their faint spectral features. In this exploratory work, we develop a methodology to perform an automated search of WR signatures through a pixel-by-pixel analysis of integral field spectroscopy (IFS) data belonging to the Calar Alto Legacy Integral Field Area survey, CALIFA. This technique allowed us to build the first catalogue of Wolf-Rayet rich regions with spatially-resolved information, allowing to study the properties of these complexes in a 2D context. The detection technique is based on the identification of the blue WR bump (around He II 4686 {\AA}, mainly associated to nitrogen-rich WR stars, WN) and the red WR bump (around C IV 5808 {\AA} and associated to carbon-rich WR stars, WC) using a pixel-by-pixel analysis. We identified 44 WR-rich regions with blue bumps distributed in 25 galaxies of a total of 558. The red WR bump was identified only in 5 of those regions. We found that the majority of the galaxies hosting WR populations in our sample are involved in some kind of interaction process. Half of the host galaxies share some properties with gamma-ray burst (GRB) hosts where WR stars, as potential candidates to being the progenitors of GRBs, are found. We also compared the WR properties derived from the CALIFA data with stellar population synthesis models, and confirm that simple star models are generally not able to reproduce the observations. We conclude that other effects, such as the binary star channel (which could extend the WR phase up to 10 Myr), fast rotation or other physical processes that causes the loss of observed Lyman continuum photons, are very likely affecting the derived WR properties, and hence should be considered when modelling the evolution of massive stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call