Abstract

Domoic acid (DA), the phycotoxin responsible for amnesic shellfish poisoning (ASP), is an excitatory amino acid naturally produced by at least twenty-eight species of the bloom-forming marine diatoms Pseudo-nitzschia spp. Suspension feeders, such as bivalve mollusks, can accumulate and lengthy retain high amounts of DA in their tissues, threatening human health and leading to extensive-prolonged fishery closures, and severe economic losses. This is particularly problematic for the king scallop Pecten maximus, which retains high burdens of DA from months to years compared to other fast-depurator bivalves. Nonetheless, the physiological and cellular processes responsible for this retention are still unknown. In this work, for the first time, a novel immunohistochemical techniques based on the use of an anti-DA antibody was successfully developed and applied for DA-detection in bivalve tissues at a subcellular level. Our results show that in naturally contaminated P. maximus following a Pseudo-nitzschia australis outbreak, DA is visualized mainly within small membrane-bounded vesicles (1 – 2.5 µm) within the digestive gland cells, identified as autophagosomic structures by means of immune-electron microscopy, as well as in the mucus-producing cells, particularly those from gonad ducts and digestive tract. Trapping of DA in autophagososomes may be a key mechanism in the long retention of DA in scallops. These results and the development of DA-immunodetection are essential to provide a better understanding of the fate of DA, and further characterize DA contamination-decontamination kinetics in marine bivalves, as well as the main mechanisms involved in the long retention of this toxin in P. maximus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.