Abstract

Oxygen diffusion coefficients were determined in a commercial ZnO-based varistor by means of the gas-solid exchange method using the isotope 18O as the oxygen tracer. The diffusion annealings were performed at 892, 942, 992 and 1092oC, in an Ar + 18O2 atmosphere under an oxygen partial pressure of 0.2 atm. After the diffusion annealings, the 18O diffusion profiles were established by secondary ion mass spectrometry (SIMS). The results show an increase of the oxygen diffusion in the varistor, both in bulk and in grain boundaries, when compared to the oxygen diffusion in undoped ZnO. The increase of the oxygen bulk diffusion in the varistor agrees with an interstitial mechanism for the oxygen diffusion. The results also show that the grain boundary is a fast path for the oxygen diffusion in the varistor. However, the oxygen diffusion in the grain boundaries of the varistor seems to depend on several chemical and microstructural parameters and does not allow a simple explanation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.