Abstract

Human tissue-plasminogen activator (t-PA) is a multidomain glycoprotein which holds high biomedical value due to its therapeutic role in clot-specific fibrinolysis. Although atomic-resolution structures of individual domains except Kringle1 are available, no structural information is available on how these domains and glycosylation are oriented in space relative to each other in the full-length protein. SAXS intensity profile acquired from samples of t-PA was used to "steer" structures of individual domains and the homology model of the first kringle domain to generate a structural model of the protein part of t-PA. Differences in the shape profiles of SAXS data-based dummy atom and proteinogenic models aided in grafting glycosylated moieties on the coordinates of t-PA. According to previously reported mutagenesis-rendered altered functional profiles, normal-mode analysis of our model revealed that the fibrin binding F/E domains "communicate" with the active-site in the P domain via Kringle2, while Kringle1 is positioned away from these long-distance interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.