Abstract

ABSTRACT Enhancing traffic signal optimisation has the potential to improve urban traffic flow without the need for expensive infrastructure modifications. While reinforcement learning (RL) techniques have demonstrated their effectiveness in simulations, their real-world implementation is still a challenge. Real-world systems need to be developed that guarantee a deployable action definition for real traffic systems while prioritising safety constraints and robust policies. This paper introduces a method to overcome this challenge by introducing a novel action definition that optimises parameter-level control programmes designed by traffic engineers. The complete proposed framework consists of a traffic situation estimation, a feature extractor, and a system that enables training on estimates of real-world traffic situations. Further multimodal optimisation, scalability, and continuous training after deployment could be achieved. The first simulative tests using this action definition show an average improvement of more than 20% in traffic flow compared to the baseline – the corresponding pre-optimised real-world control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.