Abstract

It is expected that free-electron laser (FEL) radiation with its unique properties will allow real-time tracking of structural changes during chemical reactions. The methods suggested being applied range from x-ray spectroscopy to diffraction. In order to reach this goal, in this work we will present our studies utilizing soft x-ray FEL radiation generated at the FLASH facility. We will present case studies of ultrafast x-ray diffraction on nanocrystalline lamellar assemblies of chemical relevance and heat dissipation studies on polymer foils (upon FLASH excitation) as revealed by ultrafast optical reflectivity. The extension of these studies to characterize in vacuum water jets during their interaction with FEL radiation will be given at the end if this overview. In conclusion, it can be stated that FLASH-FEL radiation can be used for studying chemical processes as long as the pulse duration is smaller than the characteristic time scales of destruction (ionization) and heat dissipation processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.