Abstract

The mechanism of genome transfer from the virion to the host cytoplasm is critical to understand and control the beginning of viral infection. The initial steps of bacteriophage SPP1 infection of the Gram-positive bacterium Bacillus subtilis were monitored by following changes in permeability of the cytoplasmic membrane (CM). SPP1 leads to a distinctively faster CM depolarization than the one caused by podovirus ϕ29 or myovirus SP01 during B. subtilis infection. Depolarization requires interaction of SPP1 infective virion to its receptor protein YueB. The amplitude of depolarization depends on phage input and concentration of YueB at the cell surface. Sub-millimolar concentrations of Ca2+ are necessary and sufficient for SPP1 reversible binding to the host envelope and thus to trigger depolarization while DNA delivery to the cytoplasm depends on millimolar concentrations of this divalent cation. A model describing the early events of bacteriophage SPP1 infection is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.