Abstract

AbstractA method is presented here that allows, in principle, the prediction of the existence and structure of (meta)stable solid compounds. It is based on a set of adjustable modules that are applied to the study of the energy function of the chemical system of interest. The main elements are a set of routines for global optimization and local minimization, as well as algorithms for the investigation of the phase space structure near local minima of the potential energy, and the analysis and characterization of the structure candidates. The current implementation focuses on ionic compounds, for which empirical potentials are used for the evaluation of the energy function in the first stage, and a Hartree–Fock algorithm for refinements. The global optimization is performed with a stochastic simulated annealing algorithm, and the local minimization employs stochastic quenches and gradient methods. The neighborhoods of the local minima are studied with the threshold algorithm. The results of this approach are illustrated with a number of examples: compounds of binary noble gases, and binary and ternary ionic compounds. These include several substances that have not been synthesized yet, but should stand a fair chance of being kinetically stable, for example further alkali metal nitrides besides Li3N, as well as Ca3SiBr2 or SrTi2O5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.