Abstract

We use in situ synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS) to demonstrate that the formation of crystalline siderite (FeCO(3)) during the corrosion of steel in CO(2)-saturated brine - a problem of practical interest relating to the growth of protective scales on the interior surface of oil and gas production pipelines - is preceded by the formation of a colloidal precipitate in the solution and an amorphous surface layer, both assumed to be amorphous ferrous carbonate. Grazing incidence SAXS shows instantaneous film formation upon the application of an anodic potential, followed by development of a separate population of particles at later times, then by the formation of crystalline species, observed by WAXS. These observations can be interpreted in terms of crystal nucleation within the amorphous surface layer. Traces of Cr(3+) in the solution significantly accelerate the precipitation rate of the colloidal precursor and accelerate the appearance of the crystalline scale. We speculate on the significance of these observations for the nucleation, growth and morphology of the corrosion scale and hence its protectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.