Abstract
In this article, we develop a first-stage linear regression command, fsivqreg, for an instrumental-variables quantile regression (QR) model. The quantile first stage is analogous to the least-squares case, that is, a linear projection of the endogenous variables on the instruments and other exogenous covariates, with the difference that the QR case is a weighted projection. The weights are given by the conditional density function of the innovation term in the QR structural model, at a given quantile. An empirical application illustrates its implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Stata Journal: Promoting communications on statistics and Stata
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.