Abstract
One of the most exotic light neutron-rich nuclei currently accessible for experimental study is ^{40}Mg, which lies at the intersection of the nucleon magic number N=28 and the neutron drip line. Low-lying excited states of ^{40}Mg have been studied for the first time following a one-proton removal reaction from ^{41}Al, performed at the Radioactive Isotope Beam Factory of RIKEN Nishina Center with the DALI2 γ-ray array and the ZeroDegree spectrometer. Two γ-ray transitions were observed, suggesting an excitation spectrum that shows unexpected properties as compared to both the systematics along the Z=12, N≥20 Mg isotopes and available state-of-the-art theoretical model predictions. A possible explanation for the observed structure involves weak-binding effects in the low-lying excitation spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.