Abstract
Although ecological restoration generally succeeds in increasing physical heterogeneity, many projects fail to enhance biota. Researchers have suggested several possible explanations, including insufficient restoration intensity, or time-lags in ecological responses that prevent detection of significant changes in short-term monitoring programs. This study aims to evaluate whether benthic macroinvertebrate communities responded to an expanded set of stream restoration measures within a study period of one to five years after completion of the restoration project. We studied 10 forest streams in northern Sweden that were channelized in the past for timber floating. Managers subjected six of these streams to habitat restoration, on each of these we selected two reaches, located in close proximity but differing in restoration intensity. In "basic" restored reaches, the restoration managers broke up the channelized banks and returned cobbles and small boulders to the main channel. In "enhanced" restoration reaches, they added additional large wood and boulders to reaches previously subjected to basic restoration, and rehabilitated gravel beds. The remaining four streams were not restored, and thus represent the baseline impacted (channelized) condition. We surveyed stream benthic assemblages before the enhanced restoration (year 2010) and three times afterward between 2011 and 2015. Five years after restoration, macroinvertebrate assemblages at the enhanced restored reaches were more differentiated from channelized conditions than those at basic-restored reaches. This reflected increased relative abundances of the insect orders Ephemeroptera and Trichoptera and the bivalve molluscs Sphaeriidae and decreased relative abundances of Chironomidae (Diptera). Analysis of functional traits provided further insights on the mechanistic explanations driving the recovery, e.g., indicating that the augmented channel retention capacity at enhanced restored reaches favored taxa adapted to slow flow conditions and more effectively retained passive aquatic dispersers. The increased restoration intensity in enhanced restored reaches has resulted in shifts in the composition of benthic macroinvertebrate assemblages, including increases in more sensitive taxa. These shifts became fully apparent five years after the enhanced restoration. Our results emphasize the value of longer-term monitoring to assess ecological responses following restoration, and of undertaking additional restoration as a valuable management option for previously restored sites that failed to achieve biotic recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.