Abstract
The reaction of first row transition M(II) ions with KSCN in various solvents form tetrahedral (NMe4)2[M(II)(NCS)4] (M = Fe, Co), octahedral trans-M(II)(NCS)2(Sol)4 (M = Fe, V, Ni; Sol = MeCN, THF), and K4[M(II)(NCS)6] (M = V, Ni). The reaction of M(NCS)2(OCMe2)2 (M = Cr, Mn) in MeCN and [Co(NCMe)6](BF4)2 and KSCN in acetone and after diffusion of diethyl ether form M(NCS)2(Sol)2 that structurally differ as they form one-dimensional (1-D) (M = Co; Sol = THF), two-dimensional (2-D) (M = Mn; Sol = MeCN), and three-dimensional (3-D) (M = Cr; Sol = MeCN) extended structures. 1-D Co(NCS)2(THF)2 has trans-THFs, while the acetonitriles have a cis geometry for 2- and 3-D M(NCS)2(NCMe)2 (M = Cr, Mn). 2-D Mn(NCS)2(NCMe)2 is best described as Mn(II)(μ(N,N)-NCS)(μ(N,S)-NCS)(NCMe)2 [= Mn2(μ(N,N)-NCS)2(μ(N,S)-NCS)2(NCMe)4] with the latter μ(N,S)-NCS providing the 2-D connectivity. In addition, the reaction of Fe(NCS)2(OCMe2)2 and 7,7,8,8-tetracyanoquino-p-dimethane (TCNQ) forms 2-D structured Fe(II)(NCS)2TCNQ. The magnetic behavior of 1-D Co(NCS)2(THF)2 can be modeled by a 1-D Fisher expression (H = -2JS(i)·S(j)) with g = 2.4 and J/kB = 0.68 K (0.47 cm(-1)) and exhibit weak ferromagnetic coupling. Cr(NCS)2(NCMe)2 and Fe(II)(NCS)2TCNQ magnetically order as antiferromagnets with Tc's of 37 and 29 K, respectively, while Mn(NCS)2(NCMe)2 exhibits strong antiferromagnetic coupling. M(NCS)2(THF)4 and K4[M(NCS)6] (M = V, Ni) are paramagnets with weak coupling between the octahedral metal centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.