Abstract

We are developing a GaAs photoconductive detector for far-infrared (FIR) astronomy. A detector based on GaAs in the blocked impurity band (BIB) configuration is expected to extend the long wavelegth limit of currently available stressed Ge:Ga photoconductors up to about 330 microns. Without the need of uniaxial stress applied to the crystal, this would furthermore allow the fabrication of single chip arrays with a large number of pixels. We are reporting results of the characterization of preliminary GaAs BIB test structures. The experimental work is supported by numerical modeling that includes all contact and space charge effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.