Abstract

Context. In this paper we present the first system test in which we demonstrate the concept of using an array of Distributed Read Out Imaging Devices (DROIDs) for optical photon detection. Aims. After the successful S-Cam 3 detector the next step in the development of a cryogenic optical photon counting imaging spectrometer under the S-Cam project is to increase the field of view using DROIDs. With this modification the field of view of the camera has been increased by a factor of 5 in area, while keeping the number of readout channels the same. Methods. The test has been performed using the flexible S-Cam 3 system and exchanging the 10x12 Superconducting Tunnel Junction array for a 3x20 DROID array. The extra data reduction needed with DROIDs is performed offline. Results. We show that, although the responsivity (number of tunnelled quasiparticles per unit of absorbed photon energy, e- /eV) of the current array is too low for direct astronomical applications, the imaging quality is already good enough for pattern detection, and will improve further with increasing responsivity. Conclusions. The obtained knowledge can be used to optimise the system for the use of DROIDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call