Abstract

FY-3E WindRAD (Fengyun-3E Wind Radar) is a dual-frequency rotating fan-beam scatterometer. Its data characteristics, NOC (NWP Ocean Calibration), and wind retrieval performance are investigated in this paper. The diversity of the radar view geometry varies across the swaths, with maximum diversity in the sweet swaths and limited diversity in the outer and nadir swaths. When NOC backscatter calibration coefficients are computed as a function of incidence angle only (NOCint), a smooth correction is found. However, when relative antenna azimuth angle is included (NOCant), it appears that the corrections as a function of relative azimuth angle vary harmonically and substantially for a specific incidence angle. NOCant corrections yield a better fit of the measurements to the GMF (Geophysical Model Function). Hence, NOCant is applied for the analysis of wind retrieval from the Ku-band and C-band. An extra engineering correction of 0.15 dB and 0.20 dB is applied on Ku-band and C-band backscatter values, respectively, to reduce the wind speed bias without increasing the standard deviation. Overall, NOCant is the best option for both channels. In addition, the instrument backscatter data stability over time is good, and the retrieved winds can fulfill operational requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.