Abstract

The South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), a destructive pest on tomato, has invaded most Afro-Eurasian countries. Recently invaded by the pest, most tomato crops in greenhouses and open fields in Tajikistan are currently suffering major damage. While failure in management using chemical insecticide has been frequently observed, alternative options such as biological control is urgently needed. In this study, we evaluated the effectiveness of the common green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) against T. absoluta. In controlled laboratory conditions, C. carnea showed high predation rate on both T. absoluta eggs (i.e., 36 ± 2 eggs within 24 h and 72 ± 4 eggs within 48 h) and larvae, especially it can attack the larvae both inside and outside the leaf galleries (i.e., an average of 22% of the larvae was killed inside, and an average of 35% was killed outside). In a cage exclusion experiment, T. absoluta showed relatively low larval density in the cages with pre-fruiting release of C. carnea, whereas the larval density was four to six times higher in the “no release” cages. In the “post-fruiting release” cages, the pest population that had already built up during the pre-fruiting stage eventually crashed. In an open-field experiment, the tomato crops in control plots were fully destroyed, whereas low levels of larvae density and damage were observed in the biocontrol plots. Moreover, the field release of C. carnea resulted in significantly higher tomato yield than those without release, despite no differences between the “pre-fruiting release” and “post-fruiting release” treatments. We conclude that the local commercial biocontrol agent C. carnea could be promising for the management of T. absoluta in Tajikistan. It is also one of the first reports showing the management of T. absoluta using a lacewing species. The effectiveness should be validated by further field trials in larger area of commercial crops and various locations.

Highlights

  • Biological invasions are a major component of global change and are becoming more and more challenging to modern agriculture due to unprecedented increasing trade nowadays [1]

  • Various intrinsic characteristics of this species have made it highly invasive and risky to solanaceous crops including the cryptic nature of larvae, high reproduction potential with multiple overlapping generations, strong dispersal capacity, ability to cope with various abiotic conditions [19,20,21,22,23,24], as well as moderate or high resistance to commonly-used insecticides [12,25]

  • This study shows that the lacewing species C. carnea is a promising biocontrol agent for T. absoluta

Read more

Summary

Introduction

Biological invasions are a major component of global change and are becoming more and more challenging to modern agriculture due to unprecedented increasing trade nowadays [1]. The economic cost due to invasive insect pests has been estimated as 70 billion US dollars per year globally [2]. Management options, such as quarantine procedures, monitoring, eradication, and long-term. Among the Invasive Alien Species (IAS), insect pests are one of the greatest groups that challenge agricultural and natural ecosystems where Integrated Pest Management (IPM) proves to be a reliable strategy to reduce the harm. Various intrinsic characteristics of this species have made it highly invasive and risky to solanaceous crops including the cryptic nature of larvae, high reproduction potential with multiple overlapping generations, strong dispersal capacity, ability to cope with various abiotic conditions [19,20,21,22,23,24], as well as moderate or high resistance to commonly-used insecticides [12,25]. Its invasion has resulted in decreased yields and quality of fruits, increased control costs, and heavy reliance on chemical insecticides [25], with potential side effects on beneficial arthropods (e.g., through multiple potential sublethal effects [26]), which has disrupted local

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call