Abstract
A novel tripodal diglycolamide ligand containing a triazamacrocycle center (2,2',2''-(((1,4,7-triazonane-1,4,7-triyl)tris(2-oxoethane-2,1-diyl)) tris(oxy)) tris( N, N-dioctylacetamide), abbreviated as T9C3ODGA) was synthesized and characterized by conventional techniques. The ligand resulted in efficient extraction of actinide/lanthanide ions yielding the trend: Eu3+ > Pu4+ > Am3+ > NpO22+ > UO22+ > Sr2+ > Cs+. Similar to most of the other diglycolamide (DGA) ligands, Eu3+ was preferentially extracted as compared to Am3+; the separation factor ( DEu/ DAm) value at 3 M HNO3 was ca. 4.2. In contrast, separation from UO22+ ion was less effective as compared to that of other tripodal DGA ligands studied earlier. Solvent extraction studies indicated extraction of species of the ML2 (where L is T9C3ODGA) stoichiometry. The formation of an inclusion complex with no inner-sphere water molecule was confirmed from luminescence spectral studies. DFT computations predicted the presence of an inner-sphere nitrate ion in the most preferred complex, which was also supplemented by EXAFS and luminescence studies. The selectivity of T9C3ODGA could be explained on the basis of its more favorable interactions with Eu3+ as compared to those with Am3+ both in the gas and the solution phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.