Abstract

Sponges (Porifera) are recognized as aquatic multicellular organisms which developed an effective biochemical pathway over millions of years of evolution to produce both biologically active secondary metabolites and biopolymer-based skeletal structures. Among marine demosponges, only representatives of the Verongiida order are known to synthetize biologically active substances as well as skeletons made of structural polysaccharide chitin. The unique three-dimensional (3D) architecture of such chitinous skeletons opens the widow for their recent applications as adsorbents, as well as scaffolds for tissue engineering and biomimetics. This study has the ambitious goal of monitoring other orders beyond Verongiida demosponges and finding alternative sources of naturally prestructured chitinous scaffolds; especially in those demosponge species which can be cultivated at large scales using marine farming conditions. Special attention has been paid to the demosponge Mycale euplectellioides (Heteroscleromorpha: Poecilosclerida: Mycalidae) collected in the Red Sea. For the first time, we present here a detailed study of the isolation of chitin from the skeleton of this sponge, as well as its identification using diverse bioanalytical tools. Calcofluor white staining, Fourier-transform Infrared Spcetcroscopy (FTIR), electrospray ionization mass spectrometry (ESI-MS), scanning electron microscopy (SEM), and fluorescence microscopy, as well as a chitinase digestion assay were applied in order to confirm with strong evidence the finding of a-chitin in the skeleton of M. euplectellioides. We suggest that the discovery of chitin within representatives of the Mycale genus is a promising step in their evaluation of these globally distributed sponges as new renewable sources for both biologically active metabolites and chitin, which are of prospective use for pharmacology and biomaterials oriented biomedicine, respectively.

Highlights

  • The structural polysaccharide chitin exists as a dominant component in the skeletal structures of diverse fungi [1,2,3], diatoms [4], sponges [5,6,7,8,9], corals [10], mollusks [11,12], annelids [13] and arthropods

  • After preliminary experiments with respect to identification of chitin, we focused our attention on the sponge Mycale euplectellioides [61] reported only from the northern part of the Red

  • Marine demosponges of the genus Mycale seem to represent a gold mine for marine pharmacology, marine biotechnology, as well as for marine-bioinspired materials science

Read more

Summary

Introduction

The structural polysaccharide chitin exists as a dominant component in the skeletal structures of diverse fungi [1,2,3], diatoms [4], sponges [5,6,7,8,9], corals [10], mollusks [11,12], annelids [13] and arthropods (see for review [14]) This very ancient biopolymer generally occurs in association with different kinds of organic biomacromolecules (pigments, lipids, other polysaccharides and proteins), as well as with calcium- and silica-based biominerals [15]. There are no doubts that chitin (even without its derivative chitosan) is still of interest for applications as an adsorbent [23,26] and biomaterial for biomedical aims; for example, reconstruction of peripheral nerves or wound management [24,25,27]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.