Abstract

This paper reevaluates the first report of X-ray-induced somatic gene mutations. It was undertaken by John Patterson, Department Chair of Hermann Muller, using the same biological model, methods and equipment of Muller. Patterson reported X-ray induced mutation frequencies for X-chromosome-linked (sex-linked) recessive gene mutations in somatic cells of Drosophila melanogaster that resulted in color changes in the ommatidia of the eyes. Results were based on color changes detected in both male and female offspring irradiated while in egg, larval or pupal stages and for unirradiated controls. Patterson claimed that the observed dose response displayed linearity, with a clear implication that the linear response extended to background exposure levels of unirradiated controls. This reanalysis disputes Patterson's interpretation, showing that the dose response in the low-dose zone strongly supported a threshold model. The doses in the experiment, which were not clearly presented, were so high that it would preclude the assumption that the experiment provided any information of relevance to radiation exposures of humans at low doses, or even at high doses delivered at low-dose rates. Induced phenotypical changes that occurred at the higher doses, especially in female offspring, overwhelmingly resulted from X-ray-induced chromosome breaks instead of point mutations as initially expected by Patterson. The Patterson findings and linearity interpretations were an important contributory factor in the acceptance of the linear non-threshold (LNT) model during the formative time of concept consolidation. It is rather shocking now to see that the actual data provided no support for the LNT model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call