Abstract

Vancomycin-resistant enterococci pose a threat in the clinical setting and have been linked to hospital outbreaks worldwide. In 2017, a local spread of VanA-type vancomycin-resistant enterococci (VRE) occurred in Japan, and 25 enterococcal isolates, including 14 Enterococcus faecium, 8 E. raffinosus, and 3 E. casseliflavus isolates, were identified from four inpatients. Molecular analysis of the multispecies of VanA-type VRE revealed the involvement of both the dissemination of clonally related VRE strains between patients and the horizontal transfer of plasmids harboring the vanA gene cluster between Enterococcus spp. Pulsed-field gel electrophoresis showed that the plasmid DNAs without S1 nuclease treatment were able to migrate into the gel, suggesting that the topology of the plasmid was linear. Whole-genome sequencing revealed that this plasmid, designated pELF2, was 108,102 bp long and encoded multiple antimicrobial resistance genes, including ermA and ant(9). The amino acid sequences of putative replication- and transfer-related genes were highly conserved between pELF2 and pELF1, the latter of which was the first identified enterococcal conjugative linear plasmid. On comparing the genomic structure, pELF2 showed the presence of a backbone similar to that of pELF1, especially with respect to the nucleotide sequences of both terminal ends, indicating a hybrid-type linear plasmid, possessing two different terminal structures. pELF2 possessed a broad host range and high conjugation frequencies for enterococci. The easy transfer of pELF2 to different Enterococcus spp. in vitro might explain this local spread of multiple species, highlighting the clinical threat from the spread of antimicrobial resistance by an enterococcal linear plasmid.IMPORTANCE Increasing multidrug resistance, including vancomycin resistance, in enterococci is a major concern in clinical settings. Horizontal gene transfer, such as via plasmids, has been shown to play a crucial role in the acquisition of vancomycin resistance. Among vancomycin resistance types, the VanA type is one of the most prevalent, and outbreaks caused by VanA-type vancomycin-resistant enterococci (VRE) have occurred worldwide. Here, we describe an enterococcal linear plasmid responsible for multispecies local spread of VanA-type VRE. Such a study is important because although hospital outbreaks caused by mixed enterococcal species have been reported, this particular spread indicates plasmid transfer across species. This is a crucial finding because the high risk for such a spread of antimicrobial resistance calls for regular monitoring and surveillance.

Highlights

  • IMPORTANCE Increasing multidrug resistance, including vancomycin resistance, in enterococci is a major concern in clinical settings

  • The Japan Nosocomial Infections Surveillance (JANIS) program showed that the rates of resistance to penicillin G, ampicillin, erythromycin, and levofloxacin were more than 80% among E. faecium isolates

  • Most vancomycin-resistant enterococci (VRE) outbreaks worldwide have been caused by E. faecium and E. faecalis and occurred because of the dissemination of clonally related VRE strains between patients or the horizontal transfer of glycopeptide resistance genes mediated by mobile genetic elements, such as transposons or plasmids, between Enterococcus spp. [5, 11,12,13]

Read more

Summary

Introduction

IMPORTANCE Increasing multidrug resistance, including vancomycin resistance, in enterococci is a major concern in clinical settings. We describe an enterococcal linear plasmid responsible for multispecies local spread of VanA-type VRE Such a study is important because hospital outbreaks caused by mixed enterococcal species have been reported, this particular spread indicates plasmid transfer across species. Other Enterococcus spp., including E. raffinosus and E. casseliflavus, are considered low-virulence organisms; with regard to severe enterococcal infections, the incidence of non-faecium and non-faecalis enterococcal bacteremia has been gradually increasing [2, 4] These clinical isolates have been reported to be resistant to clinical drugs, including penicillin, aminoglycosides, and glycopeptides [5]. We discovered a transferrable linear plasmid harboring the vanA and vanM gene clusters from E. faecium in Japan [16] This plasmid conferring vancomycin resistance was reported to show interspecies transferability in enterococci. We describe this VanA-type VRE spread and attempt to identify the plasmid underlying this event

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call