Abstract

Viburnum chinshanense, a deciduous shrub in the family Caprifoliaceae, is a dominant tree distributed mainly in the North-Central and South-Central regions of China (Zhu et al. 2023). Because of its lush white flowers and vibrant red fruits, V. chinshanense is used widely as ornamental tree in China. In May 2022, severe powdery mildew symptoms were observed on V. chinshanense on the Huaxi Campus of Guizhou Normal University, Guiyang, China. The incidence was approximately 75% among 80 V. chinshanense plants observed. White mycelia were present on both adaxial and abaxial leaf sides, but not on fruits, petioles, or stems. Infected leaves showed slight chlorosis and twisting. The mycelia were amphigenous, forming small-to-large patches, often sparse on the upper leaf surface, but mostly confluent on the lower leaf surface. Hyphae were hyaline, 4-7 μm wide. Hyphal appressoria were lobed to multilobed, in opposite pairs or solitary. Conidiophores were erect, straight, or somewhat flexuous, 60-130 µm long (n = 30). Foot cells were subcylindrical to slightly curved-sinuous at the base, 20-40 × 6-10 µm (n = 30) in size, followed by 1-3 shorter cells. Conidia formed singly, occasionally two to three in a chain. Conidia were ellipsoid to ovoid, cylindrical, and 24-40 × 16-20 µm (n = 50). No fibrosin bodies were observed on the conidia. Chasmothecia were subglobose, 56-115 µm in diameter. The appendages were 35-70 µm long. Based on these morphological characteristics, the powdery mildew fungus was identified as Erysiphe pseudoviburni (Bradshaw et al. 2020). To confirm the identification, the ribosomal DNA internal transcribed spacer (ITS) and the ribosomal large subunit (LSU) region were amplified and sequenced using the ITS1/ITS4 primer pair (White et al. 1990) and the NL1/NL4 primer pair (Ziemiecki et al. 1990), respectively. The obtained 643-bp ITS sequence (GenBank accession no. ON729292) had 99.84% identity with E. pseudoviburni strains KUS-F27310 (MN431595) and MUMH0001 (LC009904). The obtained 593-bp LSU sequence (ON729293) had 99.83% identity with E. pseudoviburni (LC009904 and MN431595). Based on the phylogenetic analysis of the combined ITS and LSU dataset (Bradshaw et al. 2020), the isolate (GZVD-1) was grouped in a clade with the E. pseudoviburni strains KUS-F27319, KUS-F27310, and MUMH0001. To fulfill Koch's postulates, leaves of three healthy potted V. chinshanense plants were inoculated by gently pressing with diseased leaves. Non-contact plants were used as controls. All plants were incubated in a greenhouse at 25 ± 2°C, 80% relative humidity. Similar powdery mildew symptoms were observed on the inoculated plants 12 days after inoculation, whereas the control plants remained symptomless. The reisolated fungus from the inoculated plants was morphologically identical to that on originally diseased plants. ITS and LSU sequences of the reisolated fungus showed 100% identity with ON729292 and ON729293, respectively. E. pseudoviburni has previously been reported to infect some Viburnum species, including V. sieboldii in Japan (Takamatsu et al. 2015) and V. odoratissimum in South Korea (Bradshaw et al. 2020). To the best of our knowledge, this is the first report of powdery mildew caused by E. pseudoviburni on V. chinshanense in China. This work expands the known host range of E. pseudoviburni in the Viburnum genus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.