Abstract
In 1997, greenhouse-produced transplants of watermelon (Citrullus lanatus) developed water-soaked lesions on leaf petioles and main stems. As disease progressed, petioles and stems became necrotic and shriveled, and exuded a sticky, translucent tan liquid. Symptoms spread to leaves, which wilted and collapsed. Affected transplants eventually died. Although fruiting bodies were not observed on diseased plants, a fungal agent was consistently isolated from symptomatic tissues. When incubated under lights (12 h light/12 h dark cycle), isolates on potato dextrose agar produced numerous pycnidia with hyaline, cylindrical, one-septate conidia with mean dimensions of 5.6 × 2.8 μm. Under the same incubation conditions, isolates on V8 juice agar produced sparse ostiolate pseudothecia with bitunicate asci and hyaline, oval, one-septate ascospores with mean dimensions of 12.0 × 4.0 μm. Based on these characters, the isolates were identified as Didymella bryoniae (anamorph Phoma cucurbitacearum) (1,2). Pathogenicity was tested by producing conidial inocula of representative isolates and inoculating wounded cotyledons, true leaves, and petioles of watermelon (cv. Sangria), and wounded true leaves and petioles of cucumber (Cucumis sativus cv. Premier Hybrid) (3). Sterile, distilled water was applied to corresponding wounded tissues of control plants. All plants were kept in a humid chamber for 4 days. After 6 (watermelon) to 10 (cucumber) days, inoculated plants exhibited water-soaked lesions followed by necrosis, petiole and leaf wilting, and shriveling of tissues. Pycnidia were observed on cucumber plants after 18 days. The pathogen was reisolated from all inoculated plants and identified as D. bryoniae. Control plants developed no disease symptoms. In addition, agar plugs colonized with the watermelon isolates were placed onto cucumber fruit that were wounded slightly with a sterile scalpel. Fruit were incubated at 22 to 24°C in humid chambers and after 2 days sunken, circular lesions developed. The same pathogen was reisolated from the margins of fruit lesions. Wounded control fruit received sterile agar plugs and did not develop any symptoms. This is the first documentation of gummy stem blight on watermelon transplants in California.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.