Abstract

Multiple Fusarium species have been found in association with soybean (Glycine max) plants exhibiting root rot in the United States (3). Soybean plants that lacked apparent foliar symptoms, but exhibited 2- to 5-mm brown, necrotic taproot lesions and lateral root necrosis were observed in Minnesota in one field each in Marshall and Otter Tail counties in July of 2007, as well as in one field in Marshall County in July of 2008. Sampling was conducted as part of a study investigating root rot in major soybean-production areas of Minnesota. Plants were arbitrarily dug up at the R3 growth stage. Root systems were washed, surface disinfested in 0.5% NaOCl for 3 min, rinsed in deionized water, and dried. Fusarium isolates were recovered from root sections with necrotic lesions embedded in modified Nash-Snyder medium (1). One resulting Fusarium colony from one plant per county was transferred to half-strength acidified potato dextrose agar (PDA) and carnation leaf agar (CLA) to examine morphological characteristics (4). Culture morphology on PDA consisted of flat mycelium with sparse white aerial mycelium. On CLA, thick-walled macroconidia with a hooked apical cell and a foot-shaped basal cell were produced in cream-colored sporodochia. Macroconidia ranged from 32.5 to 45.0 μm long. Microconidia were oval to cylindrical with 0 to 1 septa, ranged from 7.5 to 11.25 μm long, and were produced on monophialides. Chlamydospores were produced abundantly in chains that were terminal and intercalary in the hyphae of 4-week-old cultures. Morphological characteristics of the three isolates were consistent with descriptions of F. redolens (2,4). The identity of each isolate was confirmed by sequencing the translation elongation factor 1-α (TEF) locus (4). BLAST analysis of the TEF sequences from each isolate against the FUSARIUM-ID database resulted in a 100% match for 17 accessions of F. redolens (e.g., FD 01103, FD 01369). Each F. redolens isolate was tested for pathogenicity on soybean. Sterile sorghum grain was infested with each isolate and incubated for 2 weeks. Sterile sorghum was used for control plants. Soybean seeds of cv. AG2107 were planted in 11.4-cm pots ~1 cm above a 25-cm3 layer of infested sorghum or sterile sorghum. Two replicate pots containing four plants each were used per treatment and the experiment was repeated once. Root rot was assessed 28 days after planting. Each F. redolens isolate consistently caused taproot necrosis on inoculated plants, whereas control plants did not exhibit root necrosis. Isolations were made from roots of inoculated and control plants and the isolates recovered from inoculated plants were identified as F. redolens based on morphological characteristics and TEF sequences. Fusarium species were not isolated from control plants. To our knowledge, this is the first report of F. redolens causing root rot of soybean; however, it is possible F. redolens has been found previously and misidentified as F. oxysporum (2,4). Results from inoculations suggest that F. redolens may be an important root rot pathogen in Minnesota soybean fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.