Abstract

Dengue is the most rapidly spreading vector-borne disease with an estimated 100–400 million cases each year. Control of Dengue vectors largely depends upon synthetic pyrethroids. Development of insecticide resistance in Aedes mosquitoes however, poses severe threat to insecticide-based vector management programme. Mutations in the Voltage Gated Sodium Channel gene (vgsc) serve as the primary machinery behind this resistance development. In Aedes albopictus, at least four such kdr (knock down resistance) mutations had already been documented. Here, we describe the occurrence of F1534C kdr mutation in wild population of Ae. albopictus from northern part of West Bengal, India including a novel T1520I mutation. Four populations of Ae. albopictus from the studied region were found resistant against DDT and synthetic pyrethroids, among them only one population possessed F1534C kdr mutation. A total of 200 successful amplification followed by partial sequencing of vgsc gene further revealed the presence of F1534C kdr mutation in both phenotypically susceptible and resistant mosquito specimen. Studied populations were found 81% homozygote susceptible (1534F/F), 12.5% heterozygote (1534F/C) and 6% homozygote resistant (1534C/C) for F1534C kdr mutation. The findings of the current study will help to uncover the mechanisms underlying insecticide resistance and hence to reduce errors in vector control measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call