Abstract
Eucalyptus species are widely planted in the tropics and subtropics, and eucalyptus is among the most important cash crop in Southern China. One of the most important diseases on eucalyptus is Ceratocystis wilt, caused by the fungus Ceratocystis fimbriata Ellis & Halst., and the genus name Chalaropsis has been proposed for anamorphs of Ceratocystis species (de Beer et al. 2014). During April 2018, severely infected Eucalyptus robusta trees were observed in Kunming, Yunnan Province, China. Symptomatic trees initially exhibited yellowing and wilting of foliage on individual branches, then spread to the whole canopy, sometimes followed by death of the whole tree. Reddish-brown to dark-brown discoloration in the woody xylem of affected trees, sometimes a grayish white layer of fungal growth may be seen. The disease was observed on 16% of trees surveyed. The base of trunks with typical symptoms were collected, then the discolored xylem tissues were surface disinfected with 75% ethanol for 30 s and 0.1% mercuric chloride (HgCl2) solution for 2 min, rinsed three times with sterile distilled water, plated onto potato dextrose agar (PDA) medium, and incubated at 25°C. After 6 days, a fungus was consistently observed growing from the tissue. Three isolates were obtained. In culture, colonies reaching 54mm diam within 15 days, mycelium initially white, then becoming celadon. Endoconidia unicellular, smooth, cylindrical, straight, biguttulate, 11.21 - 32.26 × 4.12 - 5.25 μm. Phialides produced on short, septate, aerial hyphae, lageniform and chain of phialoconidia (3.62 - 5.89 × 31.39 - 65.76 μm) were also observed. Chlamydospores (11.45 - 14.26 × 10.06 - 12.22 μm) were single, dark, thick-walled. Morphological characteristics of the fungus were consistent with the description of Chalaropsis thielavioides (Paulin-Mahady et al. 2002). The two of three isolates were used for molecular identification and genomic DNA was extracted from isolates (EKY2-2-1, EKY2-2-2) using the chelex-100 method (Xu et al. 2020). The ITS region of rDNA was sequenced using the procedures of Thorpe et al. (2005). Analysis of ITS sequence data (GenBank accessions MW242701, MW242702) showed that the isolates were 99% - 100% homologous to isolates of C. thielavioides from Hevea rubber, Monstera deliciosa L. and ants in China and Rosa sp. in Australia (GenBank accessions KT963172, KJ511482, KT963173 and KX954598) by BLAST analysis. Neighbor-joining (NJ) phylogenetic analysis were performed using MEGA 6.06 based on ITS sequences (Fig 1), the evolutionary distances were computed using the Maximum Composite Likelihood method. Analyses showed that both isolates (EKY2-2-1, EKY2-2-2) located on the same clade with all C. thielavioides, and clustered with the C. thielavioides strains with high bootstrap support (97% - 100%). Therefore, the fungus was identified as C. thielavioides based on morphology and molecular evidences. Pathogenicity of C. thielavioides was tested by inoculation of six one-year-old pot grown Eucalyptus citriodora seedlings. The sterilized soil of six seedlings was inoculated by drenching with 20 ml spore suspension (2.0 × 106 spores / ml). Control plants were inoculated with 20 ml of sterile distilled water. The seedlings were kept in a controlled greenhouse at 25°C and watered weekly. After one month incubation, all the isolates produced wilt symptoms, whereas control trees showed no symptoms. The original fungus was successfully re-isolated from inoculated trees and identified as C. thielavioides according to the methods described above, and no fungal growth was observed in the controls, thus satisfying Koch's postulates. Although wilt and canker caused by Ceratocystis fimbriata on eucalyptus have been previously reported in Brazil, Uruguay, Uganda, China and Pakistan (Ferreira et al. 1999; Li et al. 2014; Alam et al. 2017), eucalyptus wilt caused by C. thielavioides has not been reported anywhere. Also, wilt of rubber tree and postharvest rot on carrot caused by C. thielavioides have been reported (Li et al. 2021; Xu et al. 2020). To our knowledge, this is the first report of eucalyptus wilt caused by C. thielavioides in China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.